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Case Study of Role of SST
(2011 versus 2012 US Drought/Heat)

DTF JHM special collection:

On the role of SST forcing in 2011 and 2012 Extreme U.S. Heat
and Drought: A Study in Contrasts, Hailan Wang, Siegfried
Schubert, Randy Koster, Yoo-Geun Ham and Max Suarez



Wang et al. 2013
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Record warmth

Focus on sz simulated in AMIP runs

Record warmth
(Note: also predicted by

Observed T2m Simulated T2m  NMME)

(a) JFM2011 (a) JFM2011

() JJ2011 (f) JJ4o12
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Tex/Mex heat/drought Flash heat wave/drought Some impact of SST Weak/no SST impact in

in region of interest region of interest

MERRA Ensemble mean 12 GEOS-5 AMIP simulations



Focus on JFM
2011

(a)T2m, JFM 2011
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JFM Impacts of Pacific, Atlantic, and Indian Ocean SST
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Decomposing the Impact of the Pacific SST

T2m Z250hPa
2011 Tom 2012 2011 2250 2012
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Decomposing the Impact of the 2012 Equatorial Pacific SST

T2m Z250hPa Precip
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So What Matters for 2011 and 2012 JFM T2m Responses over the US in Terms of SST?

2011

2012

(d) JFM2012

(a) JFM2011
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These act to counteract the warming over the US in 2012

warming over the USin 2011



Diagnosing the AGCM JFM 2012 Response to Heating in the Pacific

Vertically-integrated Heating
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Forcing That Produces a Positive Upper Level Stream Function Response Over US
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Now focus on warm season

Observed T2m
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2011 (southern Great Plains )
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June

What caused the extreme events in the Model?
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What caused the extreme event in nature?

Evolution of 2012 anomalies based on MERRA
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Hindcast/Replay experiments for 2012 with GEOS-5 AGCM and
observed SST forcing
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Temporal Evolution of V250mb(40N—60N): 2012

MERRA hindcasts partial replays: 0-150W:50S-60N partial replays: 0—150W:20N-60N partial replays: 0—150W;20S—20N
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Challenges

Improve understanding of responses to SST outside the
equatorial Pacific — AMIP runs may not be the best tool!

Improve SST predictions in Indian and Atlantic Oceans

In general, need to better quantify what aspects of SST matter
for regional responses (see e.g. Shin, Sardeshmukh and Webb
2010)

At subseasonal time scales need to better understand the role
and nature of atmospheric forcing in generating wave
responses (these appear to be key to generating some short
term extremes especially during boreal summer)

Need to better understand/simulate the local
responses/interactions (LLJs, land feedbacks, etc)

Need to better understand and quantity changes in
predictability (forecasts of opportunity)



Drought Task Force focus areas/themes:

- improving narrative communication on causes of drought (key issues
include the role of soil moisture, ocean conditions, evaporative demand,
land surface-precipitation-temperature relationships, cross-temporal
and cumulative aspects of drought risk).

- Quantifying current monitoring and prediction capabilities, and
particularly improvements attributable to the Drought Task Force
projects.

- Identifying and investigating areas that offer the most promise for
improving operational capabilities, and strengthening the drought
research to operations capabilities (RtC)

Monthly telecons have been structured to reflect the above themes
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Upcoming Climate Prediction Task Force meeting
Tne Climate Prediction Task Force Meeting is taking
place Cct. 22-23 in College Park jointly with the
NOAA's 38th COPW.




A DTF Special Collection of the Journal of Hydrometeorology
Topic: “Advancing Drought Monitoring and Prediction”
Organizers: Siegfried Schubert, Annarita Mariotti, Kingtse Mo

Collection to include 16 papers spanning prediction, understanding and monitoring

Prediction research gaps:
- current prediction skill versus predictability
- are there under exploited sources of predictability?
- how can improved understanding in hydrological processes (land, ocean
atmosphere) lead to improvements in predictive skill?

Monitoring research gaps:
-do we have the data, methodologies and metrics to document improvements?
-what are the most promising new methodologies and data?
-how can local, regional and national systems be best coordinated?
-what are the challenges in scaling up monitoring to global scales?

Improvements in drought information systems:
-what are the missing elements (monitoring and prediction)
-which are “science-limited” that require additional research?
-are there societal sectors currently not being adequately served?



a) Monitoring :

Al: The relationship between 2-meter air temperature and lapse rate in the western U.S., Jiarui Dong, Brian
Cosgrove, Michael Ek, Kingtse Mo

A2: Using Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over CONUS.
Jiarui Dong, Mike Ek, Dorothy Hall, Christa Peters-Lidard, Brian Cosgrove, Jeff Miller, George Riggs, Youlong Xia
A3: A Nonparametric Multivariate Multi-Index Drought Monitoring Framework, Zengchao Hao and Amir
Aghakouchak

A4: An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with
U.S. Drought Monitor Classifications, Martha Anderson et al.

A5: Uncertainties, relationships and optimal blends of ensemble-mean NLDAS drought indices, Xia, Youlong.,
M.B. Ek, D. Mocko, C. Peters-Lidard, J. Sheffield, J. Dong, and E.F. Wood, 2012:

A6: Examining Rapid onset drought development using the thermal infrared based evaporative stress index,
Otkin et al

A7: Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative
Entropy, Dirmeyer

A8: Objective drought classification using multiple land surface models, Kingtse Mo and Dennis Lettenmaier
A9: A prototype global drought information system based on multiple land surface models, Bart Nijssen et al

b) Prediction :

B1: Dynamical Causes of the 2010/11 Texas Northern Mexico Drought, Richard Seager, Lisa Goddard, Jennifer
Nakamura, Naomi Henerson, Donna Lee

B2: On the role of SST forcing in 2011 and 2012 Extreme U.S. Heat and Drought: A Study in Contrasts, Hailan
Wang, Siegfried Schubert, Randy Koster, Yoo-Geun Ham and Max Suarez

B3: Soil Moisture Initialization Error and Subgrid Variability of Precipitation in Seasonal Streamflow Forecasting,
Randy Koster, Gregory K. Walker, Sarith P. P. Mahanama, and Rolf H. Reichle

B4: Southeast US Rainfall Prediction in the National Multi-Model Ensemble, Johnna M. Infanti and Ben P.
Kirtman

B5: Probabilistic Seasonal Forecasting of African Drought by Dynamical Models, Xing Yuan et al. — submitted
B6: A Bayesian Framework for Probabilistic Seasonal Drought Forecasting, Shahrbanou Madadgar and Hamid
Moradkhani

B7: Causes and Predictability of the 2012 Great Plains Drought: M. Hoerling, J. Eischeid, A. Kumar, R. Leung, A.
Mariotti, K. Mo, S. Schubert, and R. Seager (BAMS)



